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Abstract—Secure data deduplication can significantly reduce the communication and storage overheads in cloud storage services,
and has potential applications in our big data-driven society. Existing data deduplication schemes are generally designed to either resist
brute-force attacks or ensure the efficiency and data availability, but not both conditions. We are also not aware of any existing scheme
that achieves accountability, in the sense of reducing duplicate information disclosure (e.g., to determine whether plaintexts of two
encrypted messages are identical). In this paper, we investigate a three-tier cross-domain architecture, and propose an efficient and
privacy-preserving big data deduplication in cloud storage (hereafter referred to as EPCDD). EPCDD achieves both privacy-preserving
and data availability, and resists brute-force attacks. In addition, we take accountability into consideration to offer better privacy
assurances than existing schemes. We then demonstrate that EPCDD outperforms existing competing schemes, in terms of
computation, communication and storage overheads. In addition, the time complexity of duplicate search in EPCDD is logarithmic.

Index Terms—Secure data deduplication, big data, brute-force attacks, data availability, accountability.
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1 INTRODUCTION

C LOUD storage usage is likely to increase in our big data-
driven society. For example, IDC predicts that the amount

of digital data will reach 44 ZB in 2020 [1]. Other studies have
also suggested that about 75% of digital data are identical (or
duplicate) [2], and data redundancy in backup and archival storage
system is significantly more than 90% [3]. While cost of storage is
relatively cheap and advances in cloud storage solutions allow us
to store increasing amount of data, there are associated costs for
the management, maintenance, processing and handling of such
big data [4], [5]. It is, therefore, unsurprising that efforts have
been made to reduce overheads due to data duplication. The tech-
nique of data deduplication is designed to identify and eliminate
duplicate data, by storing only a single copy of redundant data.
In other words, data deduplication technique can significantly
reduce storage and bandwidth requirements [6]. However, since
users and data owners may not fully trust cloud storage providers,
data (particularly sensitive data) are likely to be encrypted prior
to outsourcing. This complicates data deduplication efforts, as
identical data encrypted by different users (or even the same user
using different keys) will result in different ciphertexts [7], [8].
Thus, how to efficiently perform data deduplication on encrypted
data is a topic of ongoing research interest.

In recent times, a number of data deduplication schemes have
been proposed in the literature. These schemes are designed to
realize encrypted data deduplication (see [9], [10], [11]). For
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example, the µR-MLE2 (Dynamic) scheme proposed in [12] seeks
to improve the efficiency of duplicate ciphertext identification.
However, the scheme suffers from brute-force attacks, the most
popular attack in secure data deduplication schemes (see [9], [10]).
Zhou et al. [13] proposed another efficient secure deduplication
scheme SecDep to resist brute-force attacks. However, this scheme
only deals with small-sized data, and is not suitable for big data
deduplication. To solve this problem, Yan et al. [14] proposed
a scheme to deduplicate encrypted big data stored in the cloud
based on ownership challenge and proxy re-encryption. Although
this scheme is efficient, it is vulnerable to brute-force attacks.

While there are schemes in the literature that are resilient
to brute-force attacks, we are not aware of any scheme that
is resilient to brute-force attacks and provides both efficiency
and data availability at the same time. Data encryption alone
is insufficient to ensure privacy in existing data deduplication
schemes. For example, duplicate information (e.g., to determine
whether plaintexts of two encrypted messages are identical) of the
outsourced data left unprotected may have serious privacy impli-
cations. A number of incidents have shown that such information
may be more invasive to one’s privacy than the core data itself
(e.g. NSA PRISM [15]). However, such information disclosure is
inevitable in existing deduplication schemes. Therefore, we aim to
minimize information leakage as much as practical, in the sense
that only the entity (the cloud storage provider) that operates the
deduplication knows it. Furthermore, if the duplicate information
is leaked, then the cloud storage provider will be held accountable
[16], [17].

It is clear that designing an efficient deduplication scheme that
achieves privacy-preserving, availability and accountability, while
resisting brute-force attacks remains challenging. Therefore, in
this paper, using a three-tier cross-domain architecture, we propose
an efficient and privacy-preserving big data deduplication in cloud
storage, hereafter referred to as EPCDD. The EPCDD scheme
achieves privacy-preserving, data availability and accountability,
as well as resisting brute-force attacks. We then construct a
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deduplication decision tree based on the binary search tree to
improve the time complexity of duplicate search. This deduplica-
tion decision tree is a dynamic tree that supports data update such
as data insertion, deletion and modification.

Next, we will introduce the system model, threat model and
design goals in Section 2, before describing notations and bilinear
groups of composite order in Section 3. We then present the
proposed EPCDD scheme in Section 4, analyze the scheme’s
privacy-preserving capability and security strength (data avail-
ability, accountability, and brute-force attack resilience) of the
EPCDD scheme in Section 5, and demonstrate the efficiency of
our EPCDD scheme in comparison to state-of-the-art schemes of
[12], [14] in terms of computation, communication and storage
overheads in Section 6. Related work is discussed in Section 7.
We conclude this paper in Section 8.

2 MODELS AND DESIGN GOALS

In this section, we formalize the system model and threat model
used in this paper, and identify our design goals.

2.1 System Model

The system model (see Fig.1) is a three-tier cross-domain big data
deduplication system, which comprises a key distribution center
(KDC), a cloud service provider (CSP), clients from different
domains and the corresponding local managers, denoted as LMA
and LMB.

• KDC: The trusted KDC is tasked with the distribution and
management of private keys for the system.

• CSP: The first tier is a CSP, which offers data stor-
age services for clients. While the CSP is capable of
supporting the storage needs of clients, it is financially
vested to reduce the expensive big data management
and maintenance overheads. Therefore, the CSP needs to
perform inter-deduplication, which means that messages
for deduplication are from different domains, to decrease
the corresponding overhead.

• LMA (LMB): The second tier consists of domains (e.g.,
organizations such as companies or universities), which
have cloud storage contracts with the CSP. Each domain
maintains a local manager (e.g., LMA or LMB), which is
responsible for intra-deduplication, and forwarding mes-
sages from clients in domain A (or B).

• Clients: Every client is affiliated with a domain (e.g., em-
ployees in the company or students and faculty members
in the university or university network, say University of
Texas system). Clients upload and save their data with the
CSP. In order to protect their data privacy and help the
CSP to complete data deduplication over encrypted data,
they encrypt the data and generate the corresponding tags.
Finally, clients send message tuples containing encrypted
data and the corresponding tags to the LMA or LMB
(clients from domains A and B send message tuples to
the LMA and LMB, respectively).

For simplicity, Fig. 1 illustrates the system model for two different
domains, but our scheme can be easily extended to support
multiple domains.
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Fig. 1: System model under consideration

2.2 Threat Model
In our threat model, the CSP is considered honest but curious,
which is the most common assumption in the literature (see [12],
[14], [18]). Specifically, the CSP honestly follows the underlying
scheme. However, it is curious about contents of stored data.
Because the CSP adopts a pay-as-you-use model, it does not
actively modify stored messages due to reputation, financial and
legal implications (e.g. a civil litigation can result in significant
reputation and financial losses to the provider). Hence, active
attacks from the CSP are not considered in this paper. However,
due to the significant amount of data stored in the cloud, it may
know the plaintext space. Hence, according to the ciphertext and
corresponding tags, the CSP (e.g. a malicious CSP employee) can
carry out brute-force attacks. Finally, the CSP may obtain the
plaintext corresponding to the special ciphertext for other illicit
purposes (e.g. information reselling for financial gains).

LMA and LMB are also considered honest but curious.
However, these entities have very limited computing and storage
capabilities. Therefore, in practice, they do not have sufficient
resources to carry out brute-force attacks. LMA or LMB may
be curious about its affiliated clients’ privacy, even though they
may not actively seek to compromise the privacy of their clients.
For example, if the domain is a company and LMA (or LMB)
is the corresponding information manager. LMA (or LMB) is
curious about the data uploaded by the staff. However, to protect
the information asset, LMA or LMB does not actively attempt to
compromise the privacy of clients, or collude with the CSP.

Clients are considered honest. In theory, it is possible that
they would collude with the CSP to obtain other clients’ privacy.
As mentioned in [14], in practice, such collusion may result
in significant risks to the reputation of the CSP, as well as
civil litigation or criminal investigations. In addition, if the CSP
colludes with client A to compromise the privacy of client B, the
CSP is also likely to collude with client B or other clients to
compromise the privacy of other existing clients. This would have
serious repercussions for the CSP if such collusion is reported or
known. Thus, we assume that the CSP does not collude with its
clients. Other than brute-force attacks, we do not consider other
active attacks.

2.3 Design Goals
The goals of our proposed EPCDD scheme are described as
follows:
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• Privacy. Although the CSP and local managers can obtain
the encrypted data along with the corresponding tags, the
CSP and LMA (LMB) are not able to obtain plaintexts
from these tuples. In addition, the duplicate information
disclosure is inevitable in data deduplication, but we
seek to minimize such information leakage as much as
practical.

• Resist brute-force attacks. Suppose the CSP has some
background knowledge of the plaintext space. Although
the CSP stores encrypted message tuples of all clients
and has knowledge of some secret parameters (see section
4.1) received from the KDC, it is not able to obtain the
plaintext corresponding to the specific ciphertext through
brute-force attacks.

• Availability. In order to reduce the big data storage and
management overheads, the CSP may attempt to delete
the duplicate data, without affecting data availability.

• Accountability. Accountability provides citizens a means
of holding actors such as politicians and government
officials responsible for their actions, particularly those
that have an impact on the society, etc [19]. Similarly,
in this paper, clients delegate data storage to the CSP by
paying associated costs, and disclose the duplicate infor-
mation to the CSP to help completing the encrypted data
deduplication. Hence, the CSP must ensure that clients
can be assured that the CSP is accountable in the sense
that the CSP will hold true to the contractual obligations
(e.g. availability and privacy).

• Efficiency. The storage, computation and communication
overheads associated with the big data deduplication
should be as small as possible, and the cost of searching
for duplicated data should also be minimized.

3 PRELIMINARY

In this section, we define some notations and outline the definition
of the bilinear groups of composite order, which serves as the
building block of the proposed EPCDD scheme.

3.1 Notations
• a | b : b can be divisible by a.
• {0, 1}n : set of binary string of length n.
• {0, 1}∗ : set of all finite binary strings.
• ski : symmetric key for encrypting the data mi.
• Enckey(·) : symmetric encryption algorithm with sym-

metric key key.
• |m| : bit length of m.
• (Ci, τ

1
i , τ

2
i ) : message tuple for the data mi, where Ci is

the ciphertext encrypted using the symmetric encryption
algorithm, i.e., Ci = Encski(mi), τ1i and τ2i are two
tags.

• current node→ τ1(τ2) : first (second) tag stored in the
current node, i.e., if the current node stores the message
tuple (Ci, τ

1
i , τ

2
i ), then current node → τ1 = τ1i and

current node→ τ2 = τ2i .

3.2 Bilinear Groups of Composite Order
Let G and GT be two cyclic multiplicative groups of composite
order N , where N = pq, and p, q are two distinct large primes.
Let g be a generator of G. A bilinear map groups of composite

order is a mapping e : G×G→ GT with the following properties
[20], [21]:

• Bilinear: e(ga, hb) = e(g, h)ab for all g, h ∈ G, and
a, b ∈ ZN .

• Non-degeneracy: there exists g ∈ G such that e(g, g) has
order N in GT . In other words, e(g, g) is a generator of
GT , where g is a generator of G.

• Computability: there exists an efficient algorithm to com-
pute e(g, h) ∈ GT for all g, h ∈ G.

Definition 1. (Composite Bilinear Generator) A composite bilin-
ear parameter generator Gen is a probabilistic algorithm that
takes a security parameter κ as input, and outputs a 5-tuple
(N, g,G,GT , e) where N = pq, and p, q are two κ-bit prime
numbers. G and GT are two groups with order N , g ∈ G is
a generator, and e : G × G → GT is a non-degenerated and
efficiently computable composite bilinear map.

4 PROPOSED EPCDD SCHEME

In this section, we propose an efficient and privacy-preserving
cross-domain deduplication scheme for big data storage (EPCDD).

4.1 Key Generation
KDC takes a security parameter κ as input, and outputs a 5-tuple
(N, g,G,GT , e) by running the composite bilinear parameter
generator algorithm Gen(κ). Then, it selects four random numbers
s, t, a, b ∈ ZN , where p | (as+ bt), p - as and p - bt, and com-
putes yA = gaq ∈ G, yB = gbq ∈ G. In addition, KDC chooses
three cryptographic hash functions h1 : {0, 1}∗ → {0, 1}n,
h2 : {0, 1}∗ → Z∗p and h3 : G → {0, 1}n, where n is the
bit length of symmetric key. Finally, KDC sends s and t to all
members in domains A and B, respectively, and sends yA and
yB to the CSP by secure channel. KDC publishes parameters
pp = (N, g,G,GT , e, e(g, g)

s, e(g, g)t, h1, h2, h3).

4.2 Data Encryption and Tags Generation
For each client in domain A, after receiving the secret key s, the
client encrypts the data mi and generates corresponding tags for
data deduplication as follows.

4.2.1 Data Encryption
With secret key s and parameter e(g, g)t, the client computes
the message-dependent symmetric key ski = h1(mi‖e(g, g)st).
Then, this client chooses a random number ri ∈ ZN , computes the
ciphertextCi = Encski(ri‖mi), where the symmetric encryption
algorithm is the cipher block chaining (CBC) mode, i.e., AES-
CBC.

4.2.2 Tags Generation
The client generates two tags for data mi as τ1i = gs·h2(mi),
τ2i = ski mod ω, where ω is a random integer that not only
ensures the security of ski but also meets the storage capacity
of the CSP. For example, we can set |ω| = 128 bits, thus, ski
does not be disclosed by guessing attack if we set n = 256 bits
(|ski|=256 ), and it can represent up to 2128 data.

Similarly, clients in domain B execute same operations
to generate ciphertexts and tags, e.g., for mj , encrypt it as
Cj = Encskj

(rj‖mj), where skj = h1(mj‖e(g, g)st), and
the corresponding tags are computed as τ1j = gt·h2(mj) ∈ G,
τ2j = skj mod ω.
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4.3 Deduplication Decision Tree (DDT) Initialization

In order to improve the efficiency of finding duplicated data, we
construct the deduplication decision trees (DDTs) based on the
popular binary search tree (BST) [22] for searching duplicate
data. As far as we know, the DDT initialization is similar to
insertion of the BST, but this operation begins with the empty
tree. Suppose the CSP has received k different message tuples
{(C1, τ

1
1 , τ

2
1 ), (C2, τ

1
2 , τ

2
2 ), . . . , (Ck, τ

1
k , τ

2
k )} form domain A at

the current moment. Hence, CSP constructs a DDT-A for this
domain to store k message tuples for subsequence deduplication.

Based on the insertion operation of the BST, we propose
Algorithm 1 to construct DDTs. According to Algorithm 1, CSP
stores k message tuples in turn at appropriate nodes, as shown
in Fig.2. In addition, in order to ensure the time complexity of
searching duplicate is O(log k), we need to balance the tree in
the process of the DDT construction. The details are introduced in
[23].

Algorithm 1 The Construction for Deduplication Decision Tree
(DDT)

Suppose the CSP needs to store message tuple (Ci, τ
1
i , τ

2
i ) at

some point. (Initially, the current node is the root of the DDT)
while current node 6= null do

if τ2i < current node→ τ2 then
move tuple (Ci, τ

1
i , τ

2
i ) to the left subtree of current node.

else
move the tuple to the right subtree of current node.

end if
end while
Store the message tuple (Ci, τ

1
i , τ

2
i ) at the current node, where

current node → τ1 = τ1i , current node → τ2 = τ2i and
current node→ C = Ci.

4.4 Uploading Data

Suppose a client in domain B wishes to upload the data m∗ to
the CSP. This client computes two tags τ1∗ = gt·h2(m∗) and
τ2∗ = h1(m∗‖e(g, g)st) mod ω, and sends them to the LMB.
Upon receiving tags, LMB computes the hash value for τ1∗ , i.e.,
T∗ = h3(τ

1
∗ ), and then searches the hash table that records hash

values of the first tag for all different data from domain B. If
the same hash value has already been recorded, LMB returns
this client “duplication find”, and does not need to forward any
message to the CSP. Otherwise, LMB sends the tags (τ1∗ , τ

2
∗ )

to the CSP. After receiving it, CSP checks the duplication on
the DDT-A. If the duplicated data exist, CSP sends “duplication
find” to the LMB. Otherwise, it sends “upload data” to the LMB.
After receiving the feedback, LMB forwards it to the client. Once
receiving the message “upload data”, the client encrypts m∗ as
C∗ = Encsk∗(r∗‖m∗), and then sends it to the CSP via the LMB.
After receiving the ciphertext C∗, CSP leverages Algorithm 1 to
insert the message tuple (C∗, τ

1
∗ , τ

2
∗ ) into the appropriate node in

the DDT-B. See Algorithm 2 for details. It is worth noting that the
process of uploading data from clients in domain A is identical
to B. Hence, we ignore this process. Fig. 2 shows an example of
searching the duplicate data.

Algorithm 2 Data Deduplication over DDT-A

1: Client→ LMB: a client sends two tags (τ1∗ , τ
2
∗ ) to the LMB.

2: LMB: LMB computes T∗ = h3(τ
1
∗ ), and then checks the

hash table. If the same hash value has already been recorded,
sends the “duplication find” back to this client. Otherwise,
LMB stores T∗ at the hash table, and transmits tags (τ1∗ , τ

2
∗ )

to the CSP.
3: CSP: After receiving tags, it starts checking for the duplicate

data from the root node. (Initially, the current node is the root
of DDT-A)
3.1 CSP determines whether current node → τ2 = τ2∗ ,

if not, it will proceed to step 3.2. Otherwise, it verifies
whether

e(current node→ τ1, gaq) · e(τ1∗ , gbq) = 1. (1)

If the equation (1) holds, then the duplicate data has been
found. CSP deletes tags (τ1∗ , τ

2
∗ ). Otherwise, it means that

there is no duplicate data. After that, CSP stops the search
and goes to step 4.

3.2 CSP compares current node → τ2 and τ2∗ . If τ2∗ <
current node→ τ2, then CSP moves the pointer to the
left subtree of the current node. Otherwise, it moves the
pointer to the right subtree. Then, it returns to step 3.1.
This process is repeated until the duplicated data is found
or the remaining subtree is null.

4: CSP → client: CSP returns 1 when the duplication is found,
and 0 otherwise.

5: Client: when the client receives 0 from the CSP, it encrypts
the data m∗ as C∗ = Encsk∗(r∗‖m∗), and sends it to the
CSP via the LMB. Otherwise, it does not need to upload m∗.

6: CSP: After receiving the ciphertext C∗, CSP leverages Al-
gorithm 1 to inset the message tuple (C∗, τ

1
∗ , τ

2
∗ ) into the

appropriate node in DDT-B.

Corollary 1. (Correctness of the inter-deduplication) Suppose two
message tuples (Ci, τ

1
i , τ

2
i ) and (Cj , τ

1
j , τ

2
j ) are from domains A

and B, respectively. The equation

e(τ1i , g
aq) · e(τ1j , gbq) = 1 (2)

holds, if and only if mi = mj .

Proof. As noted in Section 4.1, since p | (as + bt), there is
an integer k such that as + bt = kp. In addition, e(g, g) is a
generator of GT with orderN , so e(g, g)N = 1. We first prove the
sufficient condition. Suppose mi = mj , then h2(mi) = h2(mj),
we obtain:

e(τ1i , g
aq) · e(τ1j , gbq)

=e(gs·h2(mi), gaq) · e(gt·h2(mj), gbq)

=e(g, g)asqh2(mi)+btqh2(mj) (3)

=e(g, g)(as+bt)q·h2(mi)

∵ as+bt=kp, e(g,g)N=1−−−−−−−−−−−−−−−−−−−−−−→
=e(g, g)kN ·h2(mi) = 1 (4)

Hence, when mi = mj , Eq. (2) always holds.
For the necessary condition, we use reductio ad absurdum. If

Eq. (2) holds, but mi 6= mj , as shown in Eq. (3) and Eq. (4),
the condition N | (asqh2(mi) + btqh2(mj)) must be satisfied,
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Fig. 2: The deduplication decision tree for domain A (DDT-A) and an example of searching the duplicate data. Given the message
tuple (τ1∗ = gt·h2(m∗), τ2∗ ) from domain B, according to Algorithm 2, CSP finds that the same data has already been stored, i.e.,
(Ck−3, τ

1
k−3, τ

2
k−2).

which is equivalent to p | (ash2(mi) + bth2(mj)). Therefore,
we obtain:

p | (ash2(mi) + bth2(mj))

(a)⇔p | (kp · h2(mj) + as(h2(mi)− h2(mj)))

⇔p | as(h2(mi)− h2(mj))

(b)⇔p | h2(mi)− h2(mj) (5)

where (a) follows from the condition bt = kp − as, and (b)
satisfies constrains that p - as and p is the prime number.

Because h2 : {0, 1}∗ → Z∗p, the values of h2(mi) and
h2(mj) satisfy 1 ≤ h2(mi), h2(mj) ≤ p − 1. Hence, we
can obtain | h2(mi) − h2(mj) |≤ p − 2, it means that
p - (h2(mi) − h2(mj)), which contradicts the formula (5). It
is worth noting that when h2(mi) − h2(mj) = 0, the formula
(5) holds. However, as h2 is the cryptographic hash function, the
probability of collision is negligible. In other words, if mi 6= mj ,
h2(mi) − h2(mj) 6= 0, that is, the equation (2) does not hold.
Thus, we prove that Eq. (2) holds, if and only if mi = mj .

Correctness of the Eq. (1). Suppose the message tuple
(Ci, τ

1
i , τ

2
i ) is stored at the current node of DDT-A. Because all

message tuples stored in DDT-A are from domain A, we obtain:

e(current node→ τ1, gaq) · e(τ1∗ , gbq)
=e(τ1i , g

aq) · e(τ1∗ , gbq)
=e(gs·h2(mi), gaq) · e(gt·h2(m∗), gbq)

=e(g, g)asqh2(mi)+btqh2(m∗) (6)

According to Corollary 1, Eq. (6) equals to 1 if and only if
h2(mi) = h2(m∗), i.e., mi = m∗.

As described in [22], BST is a dynamic tree, which supports
lookup, insertion and deletion operations. Hence, our DDT-A and
DDT-B also support these operations. Clearly, the process of
finding the duplicated data is equivalent to the lookup operation,
and the process of adding a new data is equivalent to the insertion
operation. In addition, if the client needs to delete a specific data
stored in the CSP, then the CSP can use the deletion operation of
BST, while ensuring the balance of DDTs.

5 SECURITY ANALYSIS

In this section, we analyze the security properties of the proposed
EPCDD scheme. In particular, following design goals illustrated
in Section 2.3, our analysis will focus on explaining how the
proposed EPCDD scheme can achieve privacy-preserving, data
availability and accountability, while resisting brute-force attacks.

5.1 Privacy Analysis
We analyze that our EPCDD scheme can protect the privacy
of sensitive data from disclosure, and minimize the duplicate
information disclosure. In order to cooperate with the CSP to
process data deduplication, clients need to not only upload the
encrypted data, but also provide two corresponding tags. Because
Ci is encrypted by the symmetric encryption algorithm, i.e., AES-
CBC, the security of Ci is based on the symmetric encryption
algorithm. Moreover, if the CSP and LMA (LMB) want to obtain
mi from the tag τ1i = gs·h2(mi) (τ1i = gt·h2(mi)), it means that
they need to deal with the discrete logarithm (DL) problem and
the one-way hash function, which have been proved to be compu-
tationally infeasible difficult problems. Therefore, CSP or LMA
(LMB) cannot obtain mi from the τ1i . Because τ2i = ski mod ω,
there is an integer k such that ski = kω + τ2i . One equation
has two unknown numbers, CSP or LMA (LMB) only can obtain
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ski by guessing attack. However, as described in section 4.2, if
|ski| = 256 bits, we can set |ω| = 128 bits, which can sufficiently
resist the guessing attack. Therefore, data confidentiality can be
achieved in this paper. In addition, to verify whether the different
ciphertexts correspond to the identical plaintext, it needs to verify
whether the Eq. (1) holds. As designed in our EPCDD scheme,
only the CSP has the secret parameters gaq and gbq , so that only
it can perform this verification. In other words, only the CSP
knows the duplicate information. Thus, Our scheme can reduce
the disclosure of duplicate information as much as possible.

5.2 Brute-force Attack Resilience
As mentioned in Section 2.3, CSP has some background knowl-
edge of plaintext space M, and stores the message tuples of all
clients, but our proposed EPCDD scheme is still able to resist
brute-force attacks. Specifically, although the CSP possesses two
secret parameters gaq and gbq , it cannot obtain aq or bq due to
the hardness of the DL problem, let alone s or t (p | as + bt).
Hence, given e(g, g)s and e(g, g)t, it is hard to compute e(g, g)st

without s or t, which is the CDH problem. Similarly, it is hard to
get gs or gt.

For the specific message tuple (Ci, τ
1
i , τ

2
i ), although the CSP

has the plaintext space M and can try all data mi ∈ M, it
cannot generate the valid symmetric key ski = h1(mi‖e(g, g)st)
without e(g, g)st. Thereby, it cannot decryptCi, let alone generate
the same ciphertext Ci without knowing ski and the random
number ri. Since τ2i is determined by ski, it cannot launch
brute-force attacks through τ2i without knowing ski. Moreover,
for all mi ∈ M, CSP can compute the corresponding hash
value h2(mi). However, it still cannot compute τ1i = gs·h2(mi)

(τ1i = gt·h2(mi)) without gs (gt). Therefore, CSP can not find the
correlation between the plaintext and the specific message tuple
by brute-force attacks.

5.3 Availability
As discussed in Section 2.3, whichever the duplicated data has
been deleted, as long as the client has uploaded the ciphertext
corresponding to the specific data, it must ensure that this client
can download and decrypt the stored ciphertext to obtain this data.
More specifically, suppose client A from domain A needs to store
mi. Firstly, he sends the message tuple (Ci, τ

1
i , τ

2
i ) to the CSP.

Then, CSP discovers C∗i that has the identical data mi has been
stored previously. Hence, it does not need to store (Ci, τ

1
i , τ

2
i ).

After a period of time, client A sends the request to download
the encrypted data Ci, however, the CSP returns C∗i . As shown
in 4.2, C∗i = Encski(r

∗
i ‖mi), where ski = h1(mi‖e(g, g)st).

Obviously, client A has the symmetric key ski of mi, so it
can decrypt C∗i . In other words, although the message tuple
(Ci, τ

1
i , τ

2
i ) has been deleted by the CSP, client A can still obtain

the data mi.
As discussed in Section 2.2, CSP would not collude with its

clients so that clients cannot generate ski without mi. That is,
clients cannot obtain the data that does not belong to them. Hence,
our EPCDD scheme satisfies not only data availability but also the
proofs-of-ownership (PoW) [14].

5.4 Accountability
Under the aforementioned design goals, accountability occurs
at two cases in this paper: data unavailability and duplicate

information disclosure. If the data can not be available due to
the data deduplication, clients can conclude that the responsibility
belongs to the CSP. Since only the CSP has secret parameters gaq

and gbq , only it can verify whether the Eq. (1) holds. In other
words, only the CSP can perform encrypted data deduplication.
Moreover, if the duplicate information is leaked, we can know
that the CSP should be accountable since only the CSP knows this
information. Thus, although the CSP is honest but curious, we can
still control the behavior of the CSP to a certain extent to ensure
data availability and improve privacy-preserving (protect duplicate
information from disclosure).

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
EPCDD scheme in terms of the computational, communication
and storage overheads. Moreover, we give a comparison with the
µR-MLE2 (Dynamic) scheme [12] and Yan’s scheme [14].

6.1 Computational Overheads
There are four entities in our EPCDD scheme, namely: clients,
KDC, CSP and LMA (LMB). Under the aforementioned system
model, KDC is responsible for generation of system parameters,
which does not participate in the data deduplication. Thus, the
computational overhead of the KDC can be ignored. We analyze
the computational overhead of uploading one data in two cases:
the data is duplicate and the data is new.

For data mi, the client first generates two tags τ1i and τ2i
to help the CSP to complete the deduplication. This operation
requires one exponentiation in G, one multiplication in ZN , and
one module in Zω . Since the multiplication in ZN and module
in Zω are considered negligible compared to the exponentiation
and pairing, the computational overhead of tag generation requires
one exponentiation in G and one exponentiation in GT . If the
duplication is found, the client does not need to do anything else.
Otherwise, it needs to encrypt the data mi by symmetric encryp-
tion, i.e., AES-CBC. As shown in [14], the computational overhead
of data encryption using symmetric encryption depends on the
size of data, which is inevitable for protecting the data. Therefore,
we can ignore the computational overhead of the encryption in
the comparison of these three schemes. In addition, regardless
of whether duplicate data exist, the client needs to generate the
message-dependent key ski for data availability, which costs one
hash and one exponentiation in GT . It is worth noting that the
computational overhead of hash depends on the size of data, but
it is very fast, which can be ignored. Therefore, this computation
only needs one exponentiation in GT .

After receiving tags τ1i and τ2i , CSP compares τ2i and
current node → τ2 according to the DDT shown in Fig. 2.
If τ2i = current node → τ2, it needs to verify the Eq. (1),
which requires two pairings and one multiplication in GT . As
shown in Algorithm 2, the CSP needs to verify the Eq. (1) if and
only if τ2i = current node → τ2, which is independent of
the search complexity. Hence, the computational complexity for
finding duplication is O(1). Moreover, for the intra-deduplication,
LMA and LMB just compute the hash value h3(τ1i ), and then
check whether the same hash value exists (by comparing the value
with the records in LMA or LMB). Obviously, the computational
overhead for the LMA and LMB can be ignored.

In Yan’s scheme [14], the client ui first computes the tag xi
to help the CSP to check the duplication. If the duplicate data
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does not exist, ui encrypts the data mi with AES, and encrypts the
symmetric key CKi = E(pkAP , ski) with proxy re-encryption
(PRE) proposed in [24]. Except for the overhead of symmetric
encryption, it requires four exponentiation operations in G and
one exponentiation in GT . If the duplicate data exists, ui would
not encrypt mi and ski, but ui, CSP and AP need to verify
data ownership to ensure data availability for authorized clients.
Specifically, AP selects c and sends it to ui. After receiving
c, ui computes y, and then performs E(pkAP , y) to protect
H(mi) from disclosure. After that, it sends E(pkAP , y) to
the AP. AP first decrypts E(pkAP , y) to obtain y, and verifies
whether H(yp + cVi) = xi. If it holds, AP issues the re-
encryption key for authorized client ui by computing rkAP→ui

=
RG(pkAP ; skAP ; pkj), and then sends it to the CSP. After
receiving rkAP→ui

, CSP has to finish the re-encryption oper-
ation E(pki, skj) = R(rkAP→ui

;E(pkAP , skj)), and sends
E(pki, skj) to ui. Finally, ui decrypts the re-encryption ci-
phertext E(pki, skj) to obtain skj selected by the client uj .
Therefore, the total computational overheads include eight ex-
ponentiation operations in G, five exponentiation operations in
GT and one pairing. Likewise, in the µR-MLE2 (Dynamic)
scheme [12], regardless of whether there is the duplicated data,
the client needs to compute the tag τi = (gri , grih(mi)) and
the CSP needs to check the duplication by verifying whether
e(gr∗ , gri·h(mi)) = e(gri , gr∗·h(m∗). The computational over-
heads include two exponentiation operations in G and 2 · O(h)
pairing operations, where O(h) denotes the time complexity of
the search and h is the depth of the DDT. Furthermore, if the
duplicated data does not exist, it still takes two exponentiation
operations in G to encrypt the symmetric key.

We present the comparison of computational overheads in our
EPCDD scheme, the µR-MLE2 (Dynamic) scheme [12] and Yan’s
scheme [14] in Table. 1. From the table, it is shown that the com-
plexity of duplication search for both our EPCDD and µR-MLE2
(Dynamic) scheme [12] is O(h) (logarithmic level). Actually, for
k different data stored in the CSP, our EPCDD can ensure that the
depth h of the DDT is always log k based on the balanced BST.
However, µR-MLE2 (Dynamic) scheme [12] has been proved that
h ≥ log k. Thus, the complexity of duplication search in our
EPCDD scheme is better than µR-MLE2 (Dynamic) scheme [12].
Note that Te, Tet, Tm and Tp represent the computational costs of
an exponentiation in G, an exponentiation in GT , a multiplication
in GT and a pairing, respectively. Based on the Table. 1, when
k data need to be uploaded by different clients, wherein the
duplication ratio is δ, the total computational overheads of EPCDD
scheme, µR-MLE2 (Dynamic) scheme [12] and Yan’s scheme [14]
are k · (3Te+3Tet+2Tp+Tm), k · (4Te+2Tp ·O(h)−2Te ·δ)
and k · ((4Te + 4Tet + Tp) · δ + 4Te + Tet), respectively.
Furthermore, we conduct the experiments with PBC [25] and
OpenSSL [26] libraries running on a 2.6 GHz-processor 2 GB-
memory computing machine to study the operation costs. To this
end, we choose the security parameter κ = 512 bits, so that the
bit-length of N is 1024 bits. The experimental results indicate that
Tp = 30 ms, Tm = 0.003 ms, Tet = 2.6 ms and Te = 24 ms.

With the exact operation costs, we depict the variation of
computational overheads in terms of the number of uploads k
and duplication ratio δ (0 ≤ δ ≤ 1) in Fig. 3. Note that
the depth of the DDT is set as h = 60, which can store up
to 260 data and be enough to meet the up-to-date data storage
demand (44 zettabytes in 2020 [1]). From the figure, we can
see that the computational overheads of three schemes increase

as k increases. Actually, since our EPCDD scheme uses the
shared message-dependent symmetric key, it inherently satisfies
data availability and data ownership (i.e., the PoW). Regardless of
whether the duplicated data exist, it only needs to generate tags
and search the duplication, which represent the basic deduplication
operations. Hence, the computational overheads of our EPCDD
are independent of δ as shown in Fig. 3(a). However, for Yan’s
scheme [14], if duplicated data exist, it needs more operations
to verify the ownership to ensure the data availability besides
the basic deduplication operations. Thus, as shown in Fig. 3(c),
the computational overheads increase as duplicated data (i.e., δ)
increase. Because Yan’s scheme [14] supports big data storage and
deduplication, our EPCDD can better support big data deduplica-
tion compared with it. Actually, the computational overheads of
µR-MLE2 (Dynamic) scheme [12] decrease as δ increases, i.e.,
k · (4Te + 2Tp ·O(h)− 2Te · δ), but the maximum value of δ is
1, which is too small compared to the explosively growth of big
data (O(h)). Hence, the effect of δ is negligible, as shown in Fig.
3(b), but the computational overheads would rapidly increase as
O(h) increases, which makes this scheme can not support big data
deduplication. In summary, it is shown that our EPCDD scheme
significantly reduces the computational overheads compared with
the µR-MLE2 (Dynamic) scheme [12] and Yan’s scheme [14].

6.2 Communication Overheads

As described above, we omit communication overheads of en-
crypted data Ci and discuss the overheads in two cases: without
the duplication and with the duplication. In our EPCDD scheme,
regardless of whether duplicated data exist, the client needs to
send τ1i ‖τ2i to the CSP via the LMA or LMB, which costs
|τ1i | + |τ2i | bits. Because the length of symmetric key for AES-
CBC is 256 bits (n = 256 bits), we set |ω| = 128 bits, which
is sufficient for the security of τ2i . Thus, the size of the message
tuple is |τ1i | + |τ2i | = 1152 bits. Consider k data from different
clients need to be uploaded, wherein the duplication ratio is δ,
the whole communication overheads are 1152k bits. In addition,
KDC needs to send secret parameters to k clients and the CSP,
the messages are in the form of s‖e(g, g)t (t‖e(g, g)s) and
yA‖yB , respectively. Thus, its size should be 2048k and 2048
bits, respectively. In summary, the total communication overheads
of our EPCDD are (3200 · k + 2048) bits.

In Yan’s scheme [14], if duplicated data exist, the client ui
sends token xi‖pki to the CSP, which costs 1152 bits if hash value
is 128 bits. Then, CSP forwards this token to the AP, after that AP
sends c with 512 bits in length to ui for verifying data ownership.
After receiving c, ui returns E(pkAP , y)‖Vi with 3072 bits in
length. Finally, AP sends the re-encryption key rkAP→ui

with
1024 bits in length to the CSP for authorization of the legitimate
client ui. Hence, the communication overheads with duplication
are 6912 bits. In the case of without duplication, each client ui just
needs to upload xi‖pki‖CKi to the CSP, so the communication
overheads are 3200 bits. For k data (kδ duplicated data), the total
communication overheads are k(3712 · δ + 3200) bits. Similarly,
the total communication overheads for the µR-MLE2 (Dynamic)
scheme [12] are k(2 ·O(h) + 6144− 4096 · δ) bits.

We further plot the comparison of communication overhead
in terms of the number of uploads k and the duplication ratio
δ in Fig. 4. It is shown that our EPCDD scheme reduces the
communication overhead compared with the other two schemes.
Specifically, in Fig. 4(a), our EPCDD scheme does not vary with
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TABLE 1: A Comparative Summary: Computational Overheads

Scheme Without duplicated data With duplicated data Complexity of duplication search

EPCDD 3Te + 3Tet + 2Tp + Tm O(h)

µR-MLE2 (Dynamic) [12] 4Te + 2Tp ·O(h) 2Te + 2Tp ·O(h) O(h)

Yan’s scheme [14] 4Te + Tet 8Te + 5Tet + Tp O(1)
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(c) Yan’s scheme [14]

Fig. 3: A Comparative Summary: Computational Overheads

δ since it does not need any other communication except for the
basic communication for deduplication. However, in Fig. 4(c),
because the client needs to communicate with AP to verify the
ownership besides the basic communication, the communication
overheads of Yan’s scheme [14] increase as δ increases. For
µR-MLE2 (Dynamic) scheme [12], although the communication
overheads decrease as δ increases, the communication efficiency
is not better than our EPCDD because of the growth of O(h).
Moreover, the µR-MLE2 (Dynamic) scheme [12] uses the client-
assistant way to complete duplication search, which means that the
number of communication rounds between the CSP and clients is
O(h). Hence, this scheme brings about the communication delay,
which may sharply reduce the whole efficiency of the system in
the case of network congestion. Obviously, the duplication search
is performed by the CSP itself, so the number of communication
rounds in our EPCDD and Yan’s scheme [14] are both O(1).
Hence, our EPCDD scheme is more efficient than other two
schemes in terms of communication overhead.

6.3 Storage Costs

As mentioned above, CSP does not store any message of dupli-
cated data. Thus, for k data with kδ duplicate data, CSP just
needs to store k(1 − δ) ciphertexts and the corresponding tags.
Similarly, we omit the storage costs of ciphertexts as the same
part in the three schemes. Hence, the storage costs of our EPCDD,
µR-MLE2 (Dynamic) and Yan’s schemes are 1152k(1 − δ) bits,
6272k(1 − δ) bits and 3200k(1 − δ) bits, respectively. Fig. 5
shows the comparison of storage costs for these three schemes in
terms of k and δ. From the figures, we can see that the storage
costs for these three schemes increase as k increases and decrease
as δ increases. Further, it can be obviously shown that our EPCDD
scheme reduces storage costs compared with the others.

In order to prove the advantages of deduplication in our
EPCDD scheme, we compare the computational, communica-
tion and storage overheads with and without data deduplication

technique. Similarly, suppose k data needs to be uploaded from
different clients and the duplicate ratio is δ, if the deduplication
technique is not used, it is obvious that clients only need to encrypt
the data with symmetric encryption and upload the ciphertext to
the CSP for data storage. Hence, computational overheads are
k · TEnc, communication and storage costs are both k · |m|.
When the deduplication technique is used, for k · δ duplicate
data, our EPCDD scheme only needs to compute and upload
two tags for duplicate searching, and does not need to store any
information. As analyzed in Section 6.1 and 6.2, the computational
and communication overheads are k ·δ ·0.14 seconds and 3200 ·k
bits, respectively. For k(1 − δ) new data, clients needs to en-
crypt these data besides tag generation. Therefore, computational
overheads are k(1 − δ) · (TEnc + 0.14) seconds. Likewise, the
communication and storage overheads are k(1−δ) ·(3200+ |m|)
bits and k(1 − δ) · (1152 + |m|) bits, respectively. Finally, the
total overheads of computation, communication and storage are
k((1−δ) ·TEnc+0.14) seconds, k((1−δ) · |m|+3200)+2048
bits and k(1− δ) · (1152+ |m|) bits, respectively. We summarise
the comparison of computational, communication and storage
overheads with and without data deduplication technique in Table.
2. Furthermore, we test the operation time of data encryption with
AES-CBC by applying 256-bit AES key, the average operation
time is about 89 MB/s. Thus, the encryption time of data m is
about TEnc = |m|

89 seconds. For big data (|m| is several hundred
megabytes to several gigabytes), TEnc is about ten seconds.
Hence, the computational costs with deduplication technique are
approximately equal to k((1 − δ) · TEnc) seconds. Likewise,
with the deduplication technique, both communication and storage
overheads are approximately equal to k(1 − δ) · |m| bits. Based
on the analysis of Table. 2, we can see that the data deduplication
technique significantly reduces the computational, communication
and storage costs compared with the case of without the dedupli-
cation. Further, the effect brought by deduplication becomes better
with the increase in variables k, δ and |m|.
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Fig. 4: A Comparative Summary: Communication Overheads
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Fig. 5: A Comparative Summary: Storage Costs

From the above analysis, the proposed EPCDD scheme largely
reduces overheads for clients and the CSP compared with the
case of without the deduplication technique, especially when
the uploaded data number k and data size |m| are large and
the duplication ratio δ is high, i.e., for big data. Further, our
EPCDD scheme is indeed efficient in terms of computational,
communication and storage costs compared with the up-to-date
works, which shows the significance and practical potential of our
EPCDD scheme to support big data deduplication and storage.

7 RELATED WORK

Data deduplication technique has increasingly been used in cloud
storage services, such as Dropbox [27], Google Drive [28], Mozy
[29], Sipderoak [30], to reduce storage space and the associated
costs. Such technique can be broadly categorized based on the
level of granularity, namely: file-level and chunk-level. We refer
interested reader to [31], [32] for a performance comparison
between file-level and chunk-level deduplication approaches.

In recent times, secure data deduplication has been studied by
the research community [33]. Convergent encryption (CE), also
known as content hash keying, is a cryptosystem that produces
identical ciphertexts from identical plaintext files and has been
widely applied in secure data deduplication [34], [35], [36]. Bel-
lare et al. [10] formalize a new cryptographic primitive, message-
locked encryption (MLE), to improve the security of CE. However,

because of the use of a deterministic and message-dependent
symmetric key [9], these approaches suffer from inherent security
limitations shown in [7]. To enhance the security of deduplication
and ensure data confidentiality, Keelveedhi et al. [9] explained how
one can ensure data confidentiality by transforming the predictable
message into an unpredictable message. In their system, a key
server is introduced to generate the file tag for duplication check.
However, the third party server suffers from the single point of
failure. Thus, Liu et al. [37] proposed the first secure cross-user
deduplication scheme that supports client-side encryption without
requiring any additional independent servers.

Generally speaking, efficiency is an important indicator to
measure whether a scheme can be applied in practice. Hence, just
ensuring data confidentiality is insufficient to apply data dedu-
plication in the real-world. Secure data deduplication techniques
can also be classified, based on their underlying architecture (i.e.
client-side deduplication and server-side deduplication). Client-
side deduplication acts on the data at the client before it is
transferred. As shown in [38], [39], such an approach can result
in bandwidth and storage savings. However, client-side dedupli-
cation scheme increases the overhead of computation and key
management for clients. Thus, Li et al. [40] attempted to address
the problem of achieving efficient and reliable key management
in secure deduplication. In server-side deduplication, the target
storage server handles deduplication, and the client is unaware of
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TABLE 2: Performance Comparison (With and Without Data Deduplication Technique) in EPCDD

Computational overhead (s) Communication overhead (bits) Storage costs (bits)

Without deduplication k ∗ TEnc k ∗ |m| k ∗ |m|
With deduplication k ∗ (TEnc(1− δ) + 0.14) k ∗ (3200 + |m| ∗ (1− δ)) + 2048 k ∗ (1− δ) ∗ (1152 + |m|)

any deduplication that might occur. As shown in [41], server-side
deduplication can improve storage utilization, but does not result
in any bandwidth. In order to save on bandwidth and storage,
as well as reducing computation overheads, a client-side cross-
user deduplication scheme was proposed in [42]. Jiang et al. [12]
introduced a new primitive, µR-MLE2, which is based on the fully
randomized scheme (R-MLE2) proposed by Abadi et.al [11]. It
reduces the time complexity of deduplication equality test from
linear [11] to efficient logarithmic time over the whole data items.

As observed in [8], in addition to achieving efficiency in
storage, communication and computation, reliability, security and
privacy should also be taken into consideration when designing
a deduplication scheme. Li et al. [43] attempted to formalize the
notion of distributed reliable deduplication system, and Zhou et al.
[13] proposed an efficient secure deduplication scheme (SecDep),
which employs User-Aware Convergent Encryption (UACE) and
Multi-Level Key management (MLK) approaches to resist brute-
force attacks. To resist file-stealing attacks [7] and achieve the
access authorization [44], a number of proofs-of-ownership (PoW)
schemes have been presented in the literature, such as those in
[45], [46]. While there are a number of deduplication schemes
designed to improve efficiency and achieve security and privacy
assurances, these schemes are not adequate to handle big data.
Predictably, designing deduplication schemes to handle big data is
an ongoing research topic. For example, Yan et al. [14] proposed
a scheme to deduplicate encrypted big data stored in cloud based
on ownership challenge and proxy re-encryption. The scheme in-
tegrates data deduplication with access control to flexibly support
data access control and revocation. However, this scheme is unable
to resist brute-force attacks.

As we have previously remarked, existing schemes do not
achieve both brute-force attack resilience, privacy and efficiency.
This is the gap we contributed to in this paper.

8 CONCLUSION

Cloud storage adoption, particularly by organizations, is likely to
remain a trend in the foreseeable future. This is, unsurprising,
due to the digitization of our society. One associated research
challenge is how to effectively reduce cloud storage costs due
to data duplication.

In this paper, we proposed an efficient and privacy-preserving
big data deduplication in cloud storage for a three-tier cross-
domain architecture. We then analyzed the security of our pro-
posed scheme and demonstrated that it achieves improved privacy-
preserving, accountability and data availability, while resisting
brute-force attacks. We also demonstrated that the proposed
scheme outperforms existing state-of-the-art schemes, in terms of
computation, communication and storage overheads. In addition,
the time complexity of duplicate search in our scheme is an
efficient logarithmic time.

Future research includes extending the proposed scheme to
fully protect the duplicate information from disclosure, even by
a malicious CSP, without affecting the capability to perform data
deduplication. Future research agenda will also include extending

the scheme to be resilient against a wider range of security threats
by external attackers, as well as improving the time complexity of
duplicate search.
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